Markedness bias in reanalysis: an iterated learning model of Samoan thematic consonant alternations

Jennifer Kuo, UCLA

HisPhonCog 2023, Hanyang University

Background

- Paradigms with conflicting data patterns can be difficult to learn, resulting in learning errors.
- **Reanalysis**: when such errors are adopted into speech community, resulting in a type of language change.

Background: Samoan example

- Oceanic language,
 Polynesian subgroup
- Thematic consonant alternations (Ø~C): under suffixation, a consonant of unpredictable quality may surface
- **Example**: ergative suffix allomorphy

ERG.	STEM	SUFFIXED	GLOSS
а	rere	rere-a	'to take'
ina	iloa	iloa-ina	'to see, perceive'
tia	pulu	pulu-tia	'to plug up'
sia	laka	laka-sia	'to step over'
ŋ ia	tutu	tutu- <mark>ŋ</mark> ia	'to light a fire'
fia	utu	utu-fia	'to draw water'
mia	inu	inu- <mark>m</mark> ia	'to drink'
lia	tautau	tautau- <mark>l</mark> ia	'to hang up'
na	aŋi	aŋi- <mark>n</mark> a	'to blow'

Background: Samoan example

/a, ina/: vowelinitial allomorphs

- Oceanic language of the Polynesian subgroup
- Thematic consonant alternations (Ø~C): under suffixation, a consonant of unpredictable quality may surface

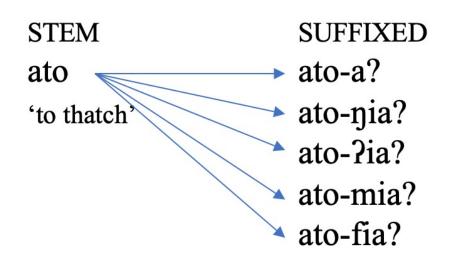
ERG.	STEM	SUFFIXED	GLOSS		
а	rere	rere-a	'to take'		
ina	iloa	iloa-ina	'to see, percei	ve'	
tia	pulu	pulu-tia	'to plug up'		
sia	laka	laka- <mark>s</mark> ia	'to step over'		
ŋ ia	tutu	tutu- ŋ ia	'to light a fire'		
f ia	utu	utu- <mark>f</mark> ia	'to draw water'		
mia	inu	inu- <mark>m</mark> ia	'to drink'		
lia	tautau	tautau-lia	'to hang up'		
na	ађі	aŋi- n a	'to blow'		

Background: Samoan example

- Oceanic language of the Polynesian subgroup
- Thematic consonant alternations (Ø~C): under suffixation, a consonant of unpredictable quality may surface

/Cia/: consonantinitial allomorphs

ERG.	STEM	SUFFIXED	GLOSS	
а	rere	rere-a	'to take'	
ina	iloa	iloa-ina	'to see, perceive'	
t ia	pulu	pulu- t ia	'to plug up'	
sia	laka	laka- <mark>s</mark> ia	'to step over'	
ŋ ia	tutu	tutu- ŋ ia	'to light a fire'	
fia	utu	utu-fia	'to draw water'	
mia	inu	inu- <mark>m</mark> ia	'to drink'	
lia	tautau	tautau- <mark>l</mark> ia	'to hang up'	
na	aŋi	aŋi- <mark>n</mark> a	'to blow'	


Development of Ø~C alternations

	'TO DRINK' STEM SUFFIXED		'TO PLUG UP'		'TO RUB'	
			Stem	Stem Suffixed		SUFFIXED
Proto-Oceanic (POC)	inu <mark>m</mark>	inu <mark>m</mark> =ia	pulu <mark>t</mark>	pulu t =ia	pulu	pulu=ia
Proto-Polynesian (PPn)						
C→Ø/#	inu	inu m ia	pulu	pulu t ia	-	
i→Ø/a	-		-		pulu	pulu=a
Samoan	inu inu= m ia		pulu	pulu=tia	pulu	pulu=a

Deletion of final consonants in PPn made suffix allomorphy unpredictable

Background: reanalyses in Samoan

• Conflicting patterns make learning difficult

...Leading to reanalyses

POC	Expected	Actual	Reanalysis	
*qatop	ato- fia	ato- a	f→Ø	

Background

• Question: How do learners decide the direction of reanalysis?

Frequency-matching: apply patterns at the proportion in which they occur in the paradigm (e.g. Eddington 1996; Coleman and Pierrehumbert 1997; Zuraw 2000; Ernestus & Baayen 2003; Albright & Hayes 2003; Hayes et al. 2009; Jun & Lee 2007, etc)

- → Existing models of reanalysis are frequency-matching
 - Ex: Minimal Generalization Learner (Albright & Hayes 2003) Analogical models (Nosofsky 1990; Hare & Elman 1995)

Background

• Question: How do learners decide the direction of reanalysis?

Frequency-matching: apply patterns at the proportion in which they occur in the paradigm (e.g. Eddington 1996; Coleman and Pierrehumbert 1997; Zuraw 2000; Ernestus & Baayen 2003; Albright & Hayes 2003; Hayes et al. 2009; Jun & Lee 2007, etc)

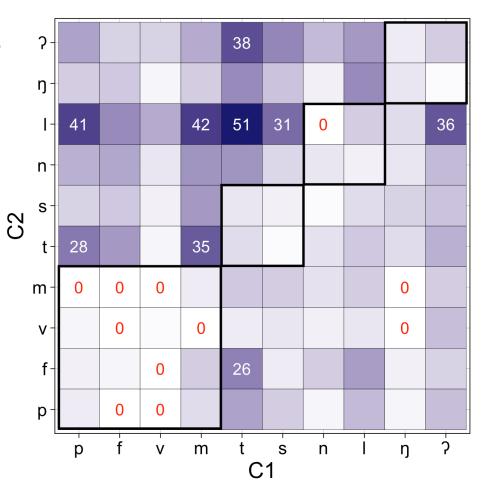
Markedness bias: a bias for outputs that are less marked (Jarosz 2006) ...where markedness effects are restricted to those already active in language-specific stem phonotactics

Active markedness in reanalysis

- Restricting bias to "active" markedness predicts a strong connection between phonotactics and morphophonology
 English ex: *[[sak] in roots
 *[dɪ[-s] 'dish + PL' in morphophonology
- Support from:
 - Acquisition: phonotactics before alternation learning (Jarosz 2006; Tesar & Prince 2007)
 - Experiments (Pater & Tessier 2005; Chong 2021)

Preview of results

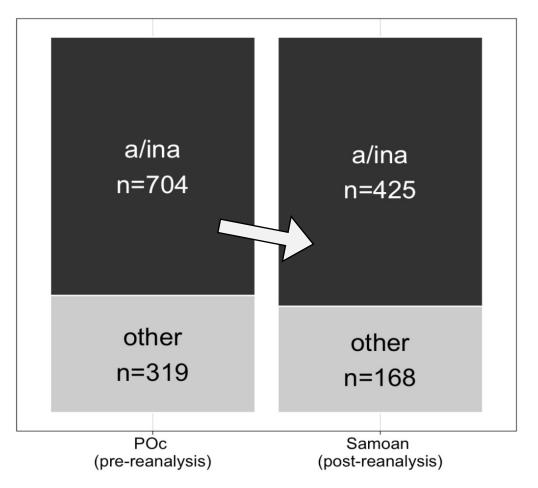
- Reanalysis is generally towards the more frequent allomorphs
 →But phonotactically marked outputs are more likely to be reanalyzed
 - →How so? Samoan roots are subject to transvocalic OCP-place effects

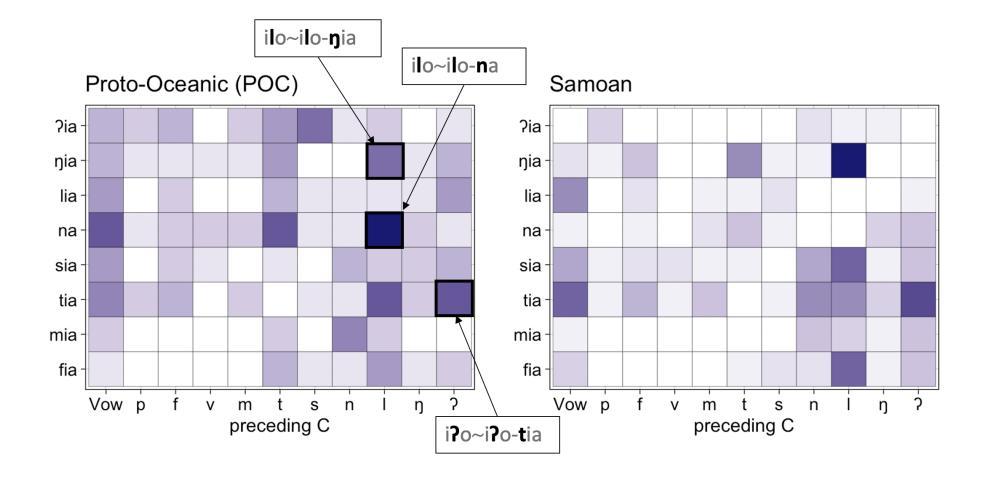

e.g. *[**puf**a] (***p...f**)

OCP-place effects in Samoan

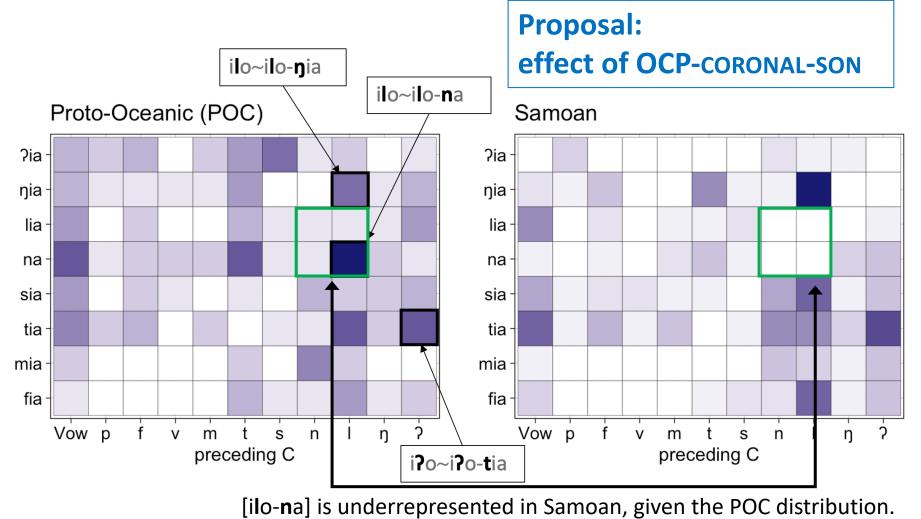
• Data: 1498 roots (Alderete & Bradshaw 2013, originally from Milner 1966)

CONSTRAINT	EXAMPLE		
OCP-LABIAL	mapa, mafu		
OCP-CORONAL-SONORANT	nanu, lanu		
OCP-DORSAL	ŋ aʔo, ʔaʔe		


- PPn *k > Samoan [?], but [ŋ] and [?] still behave as a natural class.
- Same patterns found in Proto-Polynesian


Reanalysis in Samoan

- Data: comparison of POC and Samoan
 - POC: 1023 protoforms, Austronesian Comparative Dictionary (Blust & Trussel 2010)
 - Samoan: 583 stem-suffix pairs (Milner 1966)


Reanalysis is generally towards the **most** frequent allomorphs

Cia allomorphs by identity of preceding C

Cia allomorphs by identity of preceding C

[significant in a Monte Carlo simulation]

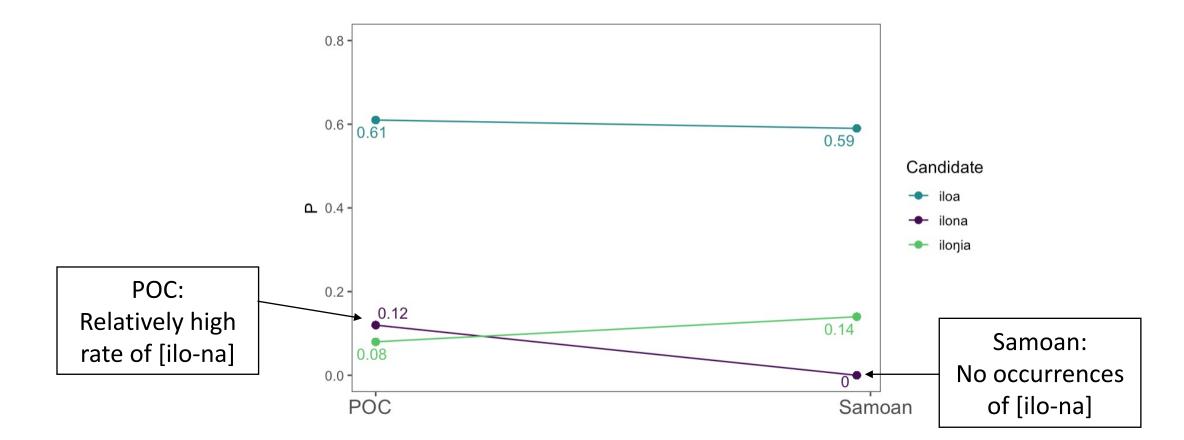
Modeling reanalysis in Samoan

- **Goal:** Explicit comparison of frequency-matching vs. markednessbiased models
- Elements of the model:
 - →MaxEnt HG to capture gradient alternations (Goldwater and Johnson 2003)
 - → Stem phonotactic grammar used to derive markedness effects (Hayes and Wilson 2008)
 - → **Bias** implemented as a Gaussian prior (Wilson 2006; White 2013)
 - → Iterative: Predictions of one iteration are input to next iteration (de Boer 2000; Kirby 2001; Brighton 2002; Kirby, Griffiths, & Smith 2014, etc.)

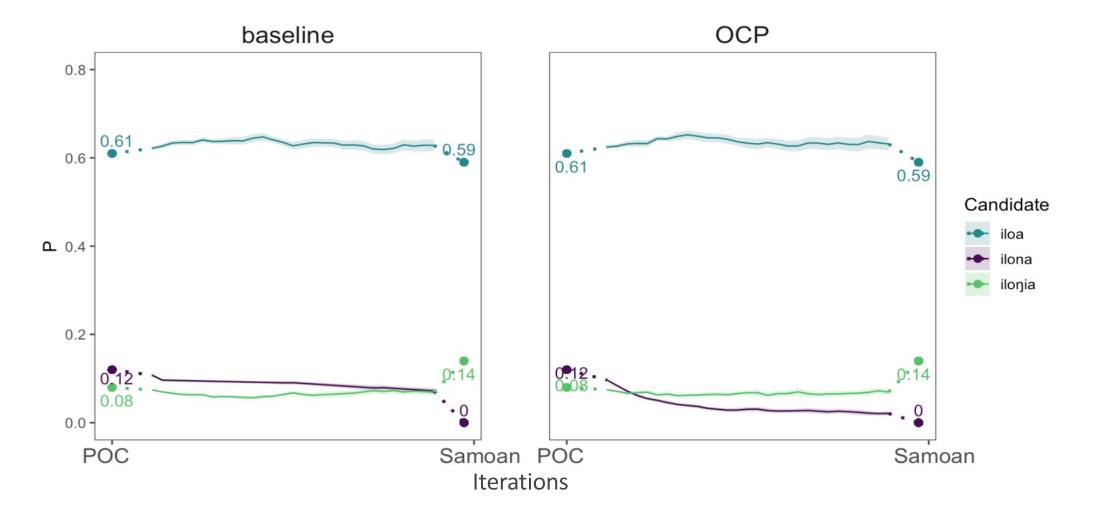
Modeling reanalysis in Samoan

- **Goal:** Explicit comparison of frequency-matching vs. markednessbiased models
- Elements of the model:
 - →MaxEnt HG to capture gradient alternations (Goldwater and Johnson 2003)
 - → Stem phonotactic grammar used to derive markedness effects (Hayes and Wilson 2008)
 - → **Bias** implemented as a Gaussian prior (Wilson 2006; White 2013)
 - →Iterative: Predictions of one iteration are input to next iteration (de Boer 2000; Kirby 2001; Brighton 2002; Kirby, Griffiths, & Smith 2014, etc.)

Phonotactic grammar


- Two phonotactic grammars:
 - **OCP-PLACE:** constraint set is all possible combinations of OCP-PLACE constraints (OCP-LABIAL, OCP-CORONAL, OCP-DORSAL) with the subsidiary features [sonorant], [voice], and [continuant].
 - **Bigram**: constraint set is all possible consonant bigram combinations
 - *p...p, *p..f, *p...t, etc.

Model results

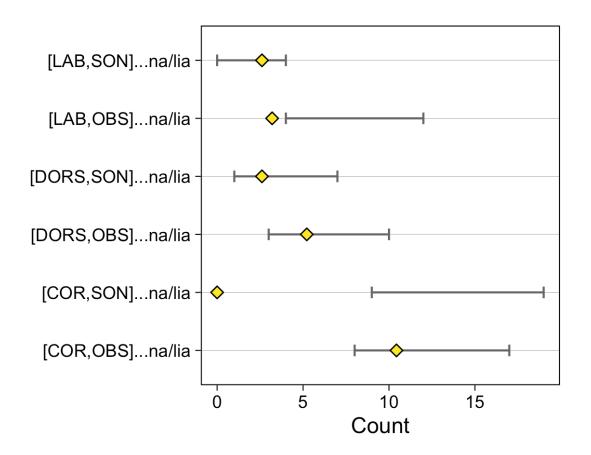

- Baseline. no markedness bias
- **OCP.** markedness constraints derived from OCP grammar, biased to have high weight
- **BIGRAM.** markedness constraints derived from bigram grammar, biased to have high weight

	L	ΔL
Baseline	-2448.81	
Bigram	-2438.39	10.42
ОСР	-2385.00	63.89

Data pattern for /ilo/ type stems

Model results

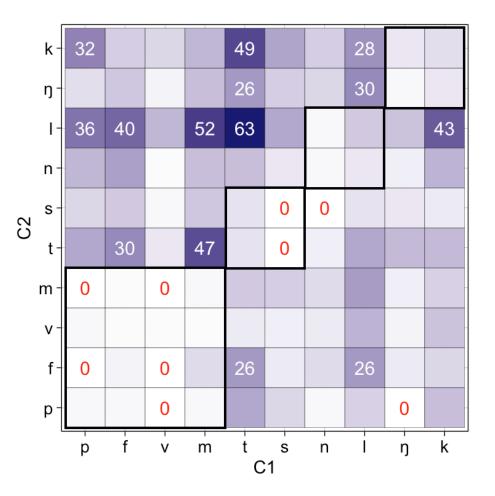
Conclusion

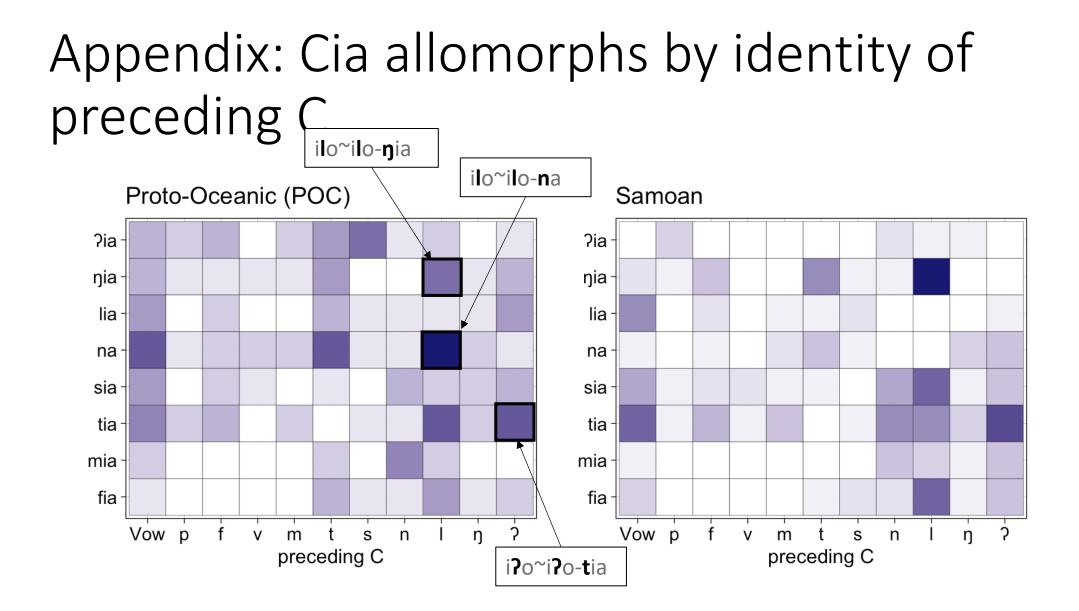

- In Samoan, reanalysis shows effects of both frequency-matching and markedness avoidance.
- Not all phonotactic generalizations are picked up by learners.
- Language change can be a "natural laboratory" for studying these effects (Kiparsky 1965; 1968; 1978, et seq)

Thank you!

• Thanks to Bruce Hayes, Kie Zuraw, and members of the UCLA Phonology seminar for their many helpful comments.

Appendix: Monte Carlo simulations


- Method: randomly resample POC corpus 10,000 times to arrive at chance-level distribution of each suffix by the preceding consonant.
- Intervals: chance-level distribution, given the historical POC data.



Appendix: OCP-place in Proto-Polynesian

- Data: Protoforms from the Polynesian Lexicon Project (POLLEX; Greenhill & Clark 2011).
- Active OCP-place constraints based on a Maxent phonotactic model (Wilson & Obdeyn 2009)

CONSTRAINT	EXAMPLE	
OCP-LABIAL	*mapa, *mafu	
OCP-CORONAL-SONORANT	*nanu, *lanu	
OCP-DORSAL	*ŋako, *kake	

Appenfix: Development of CIA allomorphs

Development of Samoan ergative suffix

		U						
Suff.	/ia/	/ina/	/a/	/Cia/	/ina/	/na/		
POc	*nofo-i-a	*tabu-i-na	*tari-i-a	*puat-i-a	*pulan-i-a	*talun-i-a	CHANGE	
	-	-	tali-a	-	-	-	*i-deletion ^A	
	-	-		-	pula-ina		Metathesis ^B	
	-	-		-		talun-a	*nia -> na	
Sam.	nofo-ia	tapu-ina	tali-a	fua-tia	pula-ina	talu-na		
	'sit'	'be banned'	'wait'	'bear fruit'	'be bright'	'forest'		
A 1	• 4• 1 1 / • 4• • 1 1 / 1 / 4• 4 1							

A. *i-deletion: *i is deleted after *i,*e¹

B. Metathesis of *nia to *ina after *a