Directions of reanalysis

Modeling 00000000000 References

Substantive bias in paradigm reanalysis: the case of Malagasy weak-stem alternations

Jennifer Kuo

UCLA

July 1, 2022 TripleAFLA (Manchester)

Directions of reanalysis

Modeling 00000000000 References

Background

Directions of reanalysis

Modeling

Modeling 00000000000 References

Paradigm reanalysis

- Paradigms which contain neutralizing alternations are difficult to learn, and prone to reanalysis.
- Example of reanalysis in Latin:

•	Before			After	
	NOM SG.	GEN SG.		NOM SG.	GEN SG.
	hono:s	hono: r is	\rightarrow	honor	hono: r is (s→r)
	soror	soro: r is		soror	soro: r is

Modeling 00000000000 References

Paradigm reanalysis

- Kiparsky (1978): studying patterns of reanalysis can give us insight into the factors that drive phonological learning.
- Recent work suggests the following factors:
 - Probabilistic distributions (frequency matching)
 - biases towards less marked outputs.

Modeling 00000000000 References

Paradigm reanalysis

- Kiparsky (1978): studying patterns of reanalysis can give us insight into the factors that drive phonological learning.
- Recent work suggests the following factors:
 - Probabilistic distributions (frequency matching)
 - biases towards less marked outputs.
- Very few quantitative models of reanalysis.
- Existing ones predict that reanalysis will always be based on probabilistic distributions.
 - Albright's Minimal Generalization Learner (MGL 2002; 2003, etc.)
 - Nosofsky's (2011) Generalized Context Model (exemplar-based analogical models).

Goals of the current talk

- Show that in Malagasy, reanalysis is driven by both:
 - distributional information
 - a substantive bias towards phonetically natural outputs.
- Outline a constraint-based model of reanalysis which captures both effects.

Basics of Malagasy phonology

- Official Malagasy (OM), based largely on the Merina dialect
- Inventory (Howe, 2021):
 - 5 vowels (/a e i o u/)

	bilabial	labiodental	dental	alveolar	retroflex	velar	glottal
plosives*	p, b		t, d			k, g	
	^m p, ^m b		ⁿ t, ⁿ d			^ŋ k, ^ŋ g	
affricates*				ts, dz	tş, dz		
				ⁿ ts, ⁿ dz	ⁿ tş, ⁿ dz		
nasals	m		n			(ŋ)	
trills/flaps				r∼r			
fricatives		f, v		S Z			h
lat. approximants				1			

*Pre-nasalized stops/affricates will be written as nasal-consonant sequences (e.g. mp [mp]).

• (C)V syllable structure.

Directions of reanalysis

Modeling 00000000000 References

Weak stems (Keenan and Polinsky, 2017)

- always end in one of the weak syllables 'ka', 'tsa', 'na'
- When weak stems are suffixed, the consonant in the weak syllable (ts/k/n) may alternate with another consonant.

pattern	ı	active (m+stem)	passive (stem+ana)	
na \sim	n	mandzávi <mark>n</mark> a	andzaví n ana	'to bear leaves'
	m	manándza n a	andzámana	'to try'
ka \sim	h	mangátaka	angatáhana	'to ask for'
	f	manáhaka	anaháfana	'to scatter'
tşa \sim	r	miána <mark>ts</mark> a	ianá r ana	'to learn'
	t	manándzatsa	anandzátana	'to promote'
	f	mandzáku <mark>ts</mark> a	andzakúfana	'to cover'

Table 1: Patterns of consonant alternation in Malagasy weak stems

Historical basis of weak stem alternations

- final consonant neutralizations, followed by vowel epenthesis, resulted in weak stems (Adelaar, 2012).
- \sim 400AD: contact with Bantu resulted in a strict CV syllable structure.
 - a subset of consonant-final forms underwent final vowel epenthesis.

References

Historical basis of weak stem alternations

Example adapted from Mahdi (1988)

(1)	tşa∼t a	lternation		
	PMP	*Rabut	*z-abut-a	
		\downarrow	\downarrow	
	PSEB	*'awut	*pia'wutan	
		\downarrow	\downarrow	
	PMlg	*'avu <mark>t</mark> ş	*fia'vutan	Final affrication: *-t > -ts
		. ↓	↓	
		'avuts <mark>a</mark>	fia'vutana	tsa \sim t alternation
	Mlg	'avuţşa	fia'vutana	'to uproot'
	PMP	Proto-Aust	ronesian	
	PMP	Proto-Mala	yo-Polynesian	

PSEB Proto-South East Barito

Modeling 00000000000

Reanalysis in weak stems

- In general, observed alternants are supposed to match specific historical final consonants.
- In cases where there is a mismatch, reanalysis has likely occured.
- Examples of possible reanalyses:

DIRECTION	ACTIVE	PASSIVE
$r \rightarrow t$	miána <mark>ts</mark> a	ianárana $ ightarrow$ ianátana
$t { ightarrow} r$	manándza <mark>ts</mark> a	anandzátana \rightarrow anandzárana

Modeling 00000000000

Reanalysis in weak stems

- In general, observed alternants are supposed to match specific historical final consonants.
- In cases where there is a mismatch, reanalysis has likely occured.
- - t \rightarrow r manándzatsa anandzátana \rightarrow anandzárana

Question: What factors influence the direction of reanalysis in Malagasy?

Directions of reanalysis

Modeling 00000000000 References

Background

Directions of reanalysis

Modeling

11/33

Modeling 00000000000

Reanalysis in Malagasy

- In Malagasy, the observed alternant often does *not* match the historical PMP one, suggesting that extensive reanalysis has occurred.
- As a preview, reanalysis appears to have largely happened in the following directions:

Ending	Direction	
ka	$f \!\! \rightarrow \!\! h$	Predicted by lexical statistics
na	$m {\rightarrow} n$	Predicted by lexical statistics
tşa	f, t $ ightarrow$ r	Not predicted by lexical statistics

Modeling 00000000000

Reanalysis in Malagasy

- In Malagasy, the observed alternant often does *not* match the historical PMP one, suggesting that extensive reanalysis has occurred.
- As a preview, reanalysis appears to have largely happened in the following directions:

Ending	Direction	
ka	$f\!\!\rightarrow\!\!h$	Predicted by lexical statistics
na	$m{\rightarrow}n$	Predicted by lexical statistics
tşa	f, t $ ightarrow$ r	Not predicted by lexical statistics

• Note: in the rest of this talk, I will focus on reanalysis in tsa-final stems.

Directions of reanalysis

Modeling 00000000000 References

Method and data

- Approach: compare modern Malagasy forms with their historical variants, and look for cases where the observed alternant doesn't match the expected one.
- Data:
 - Protoforms from Austronesian Comparative Dictionary (ACD; Blust and Trussel, 2010)
 - supplemented with loanwords from the World Loanword Database (Adelaar, 2009).
 - Modern Malagasy forms from the Malagasy Dictionary and Encyclopedia of Madagascar (MDEM; de La Beaujardière 2004), confirmed with a native speaker consultant.
 - 73 Malagasy tsa-final weak stems with known historical forms.

Predicting directions of reanalysis

- Strong preference for t (67%)
- A slight dissimilatory tendency (*r...r), which has also been noted by Mahdi (1988)

expected	count	preceding r
t (<*t,*C)	49	13 (27%)
r (<*j,*d,*d)	16	2 (13%)
f (<*b,*p)	8	1 (13%)

 Table 2: Expected distribution of alternants for tsa-stems, given final consonants of PMP

Predicting directions of reanalysis

- Strong preference for t (67%)
- A slight dissimilatory tendency (*r...r), which has also been noted by Mahdi (1988)

expected	count	preceding r
t (<*t,*C)	49	13 (27%)
r (<*j,*d,*d)	16	2 (13%)
f (<*b,*p)	8	1 (13%)

 Table 2: Expected distribution of alternants for tsa-stems, given final consonants of PMP

- Suppose that reanalysis was purely driven by distributional information...
- then, we expect it to result in **more t-alternation** (i.e. $r \rightarrow t$), and potentially **more dissimilation**.

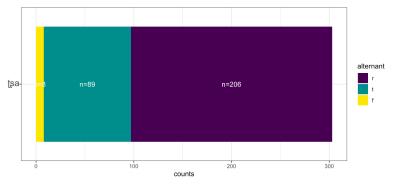
Results: directions of reanalysis

• Expected vs. actual alternant of tsa-final stems in modern Malagasy, based on known protoforms/loanwords

	alt	ernant			
match?	expected	modern Mal.	change	count	preceding r
yes	r	r		15	0
yes	t	t		21	<mark>14</mark>
yes	f	f		6	1
no	r	t	$r \rightarrow t$	1	1
no	t	r	$\substack{t \to r \\ f \to r}$	<mark>28</mark>	<mark>0</mark>
no	f	r	$f \rightarrow r$	2	0

- Overwhelmingly, reanalysis is in the direction of $t{\rightarrow}r$
 - ...except when there a preceding r
- We observe dissimilation, but also change in the opposite direction of what is predicted by distributional information.
- note: t>r is **not** a regular sound change, and VtV sequences are found in stems.

Directions of reanalysis

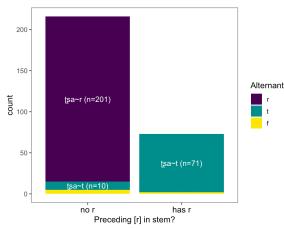

Modeling 00000000000

Results: tsa-alternation in modern Malagasy

- What does tsa-alternation look like in modern Malagasy?
- data: 305 tsa-final weak stems (from the MDEM).

Results: tsa-alternation in modern Malagasy

- What does tsa-alternation look like in modern Malagasy?
- data: 305 tsa-final weak stems (from the MDEM).
- general preference for r as alternant



Directions of reanalysis

Modeling 00000000000 References

State of tsa-alternation in modern Malagasy

- strong dissimilatory pattern
- r is the default, except when stem already has an r

Directions of reanalysis

Modeling 00000000000 References

Summary of pattern

historical Malagasy

preference for t-alternation; weak dissimilatory patterns (*r...r)

current Malagasy

preference for r-alternation; strong dissimilatory patterns

Directions of reanalysis

Modeling 00000000000 References

Summary of pattern

historical Malagasy

preference for t-alternation; weak dissimilatory patterns (*r...r)

current Malagasy

preference for r-alternation; strong dissimilatory patterns

Why was there reanalysis towards r-alternation?

- not predicted by distributional probabilities; problem for existing quantitative models of analogical change
- Cause: markedness constraint against intervocalic stops?
 - Evidence from Malagasy
 - Typological evidence

Markedness constraints against intervocalic stops

- Evidence from Malagasy
 - historical lenition/spirantization: *b>v; *p>f; *d,*d>r; *k,*g>h (Adelaar, 2012)
 - ...resulted in there being fewer intervocalic stops at some point in historical Malagasy
 - ka-final weak stems always alternate with fricatives (h, f) e.g. 'aloka~a'lohana, 'hirika ~hirifana
- Typology
 - phonetically natural, from both an articulatory (Kirchner, 1998) and perceptual (Kaplan, 2010; Katz, 2016) point of view.
 - Examples of lenition of stops specifically at morpheme boundaries: English tapping (Hayes, 2011, p. 143-144), Korean lenis stop voicing (Jun, 1994).

Directions of reanalysis

 References

Background

Directions of reanalysis

Modeling

20/33

Directions of reanalysis

Modeling 0000000000 References

Modeling

- Reanalysis of tsa-final stems is qualitatively influenced by markedness constraints.
- **Next step:** explicitly demonstrate how this works in a quantitative model
- Model should predict reanalysis of *t>r, despite the distribution of final stops in historical Malagasy, which favors t over r.

Directions of reanalysis

Modeling 0000000000 References

Modeling

- Reanalysis of tsa-final stems is qualitatively influenced by markedness constraints.
- **Next step:** explicitly demonstrate how this works in a quantitative model
- Model should predict reanalysis of *t>r, despite the distribution of final stops in historical Malagasy, which favors t over r.
- Model is based in Maximum Entropy Harmonic Grammar (Maxent; Goldwater and Johnson, 2003; Prince and Smolensky, 1993), a stochastic variant of OT which assigns candidates probabilities.
- Faithfulness constraints are biased to have lower weights.
 - Captures the intuition that learners may value markedness over faithfulness constraints in the beginning stages of learning (e.g. Tesar and Smolensky, 2000; Jusczyk et al., 2002).

Directions of reanalysis

Modeling 0000000000 References

Input

- tra-, ka-final,na- final weak stems
- Frequency counts based on the PMP protoforms.
- rather than URs, the input is **surface forms**, mapping from stem to suffixed.
 - e.g. INPUT CANDIDATES 'vuliţsa \rightarrow vu'lir-ana vu'lit-ana vu'liţş-ana
 - Reason: Empirically, all reanalyses are from the stem→suffixed forms, and this happens when learners have access to the surface stem, but not the suffixed forms.
 - Similar to approach to Albright (2002)
- Note: for simplicity, I'm ignoring tsa~f alternating forms, which are rare and do not influence model outcomes.

Directions of reanalysis

Modeling 00000000000

Constraint set: faithfulness

• IDENT-OO constraints (output-output identity constraints, by feature)

Constraint set: faithfulness

- IDENT-OO constraints (output-output identity constraints, by feature)
- Following Wilson (2006), biases are implemented as Gaussian priors, with a preferred weight (μ) for each constraint.
 - Faithfulness constraints have $\mu = 0$, and are therefore penalized for having high weight.

Constraint set: Markedness

- *ts]V, *k]V, *n]V, which assess violations for every C]V, where C is at a morpheme boundary.
 - motivates alternation of the final consonant of weak stems.
 - Need to reference morpheme boundary because within stems, prevocalic ts, k, and n are allowed (e.g. betsoka 'to swell up', tsano 'box')
 - Example:

'vulițșa	*tş]	ID-00[anterior]	ID-OO[voice]
a. vu'lit-ana		*	
b. vu'lir-ana		*	*
c. vu'liţş-ana	*!		

Constraint set: Markedness

• *V[-cont] V: motivates re-analysis from t>r

'vulițșa	*V[-cont]V	ID-00[voice]	ID-OO[ant]
a. vu'lit-ana	*!		*
😰 b. vu'lir-ana		*	*

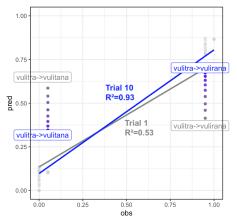
• **<u>*r...r:</u>** motivate r-dissimilation.

'vurițșa	*rr	*V[-cont]V	ID-00[voice]	ID-00[ant]
😰 a. vu'rit-ana		*		*
b. vu'rir-ana	*!		*	*

Markedness constraints

- Notably, *V[-cont]V and *r...r do not trigger alternations in the lexicon.
- Examples of stems which violate these constraints:
 - akándzo 'coat, dress', áto 'close at hand'
 - ráraka 'spilled', boréra 'weak, limp'
- However, they appear to be present as weak phonotactic constraints in the Malagasy lexicon.
 - Based on a phonotactic grammar built using the UCLA Phonotactic Learner (Hayes and Wilson, 2008).

Model results: one iteration


Results after one iteration of the model:

• Bias in the correct direction, but with a small magnitude.

input	output	type	obs (PMP)	P (biased)
vulițșa	vulir-ana	tş~r	0.28	0.33 +5%
	vulit-ana	tş∼t	0.72	0.67
	vuliţş-ana	non-alt	0	0
vurițșa	vu r ir-ana	tş~r	0.13	0.13
	vu <mark>r</mark> it-ana	tş∼t	0.87	0.87
	vu r iţş-ana	non-alt	0	0
vulika	vulih-ana	k~h	0.90	0.88
	vulif-ana	$k \sim f$	0.10	0.11
	vulik-ana	non-alt	0	0.01
vulina	vulim-ana	$n \sim m$	0.04	0.04
	vulin-ana	non-alt	0.96	0.96

Model results: multigenerational

- Running the model multiple times could simulate the effect of a bias over multiple generations.
- Method: run the model 10 times, with the results of the previous trial as the input to the next.

- Plot: observed rates of alternation in modern Malagasy vs. model predictions.
- A biased model improves fit to modern Malagasy lexicon, suggesting that it better predicts directions of reanalysis.

Directions of reanalysis

Modeling 0000000000

Conclusion

- In Malagasy, the direction of reanalysis in tsa-final weak stems is not predicted by lexical statistics.
- Instead, it is drive by two markedness constraints, both arguably phonetically natural.
 - *V[-cont]V
 - *r...r
- Reanalysis can be modeled in MaxEnt, where frequency matching is modulated by a substantive bias.

Directions of reanalysis

Modeling 0000000000 References

Special thanks to...

- Vololona, for generously using her time to provide native speaker judgements.
- Bruce Hayes, Kie Zuraw, Claire Moore-Cantwell, David Goldstein, and members of the UCLA phonology seminar for their invaluable feedback.

Directions of reanalysis

Modeling 00000000000 References

References I

- Alexander Adelaar. Malagasy. In Martin Haspelmath and Uri Tadmor, editors, *World loanword database (WOLD)*. Max Planck digital library, 2009.
- Alexander Adelaar. Malagasy phonological history and bantu influence. Oceanic Linguistics, pages 123–159, 2012.
- Adam Albright and Bruce Hayes. Rules vs. analogy in English past tenses: A computational/experimental study. *Cognition*, 90(2):119–161, 2003.
- Adam C Albright. *The identification of bases in morphological paradigms*. PhD thesis, University of California, Los Angeles, 2002.
- Robert Blust and Stephen Trussel. Austronesian comparative dictionary, web edition. *Blust's Austronesian Comparative Dictionary Website*, 2010.
- Jean-Marie de La Beaujardière. Malagasy dictionary and encyclopedia of Madagascar, 2004.
- Sharon Goldwater and Mark Johnson. Learning ot constraint rankings using a maximum entropy model. In *Proceedings of the Stockholm workshop on variation within Optimality Theory*, volume 111120, 2003.
- Bruce Hayes. Introductory phonology, volume 32. John Wiley & Sons, 2011.
- Bruce Hayes and Colin Wilson. A maximum entropy model of phonotactics and phonotactic learning. *Linguistic Inquiry*, 39(3):379–440, 2008.

Directions of reanalysis

Modeling 00000000000 References

References II

- Penelope Howe. Central Malagasy. *Journal of the International Phonetic Association*, 51 (1):103–136, 2021.
- Sun-Ah Jun. The status of the lenis stop voicing rule in Korean. *Theoretical issues in Korean linguistics*, pages 101–114, 1994.
- Peter W Jusczyk, Paul Smolensky, and Theresa Allocco. How english-learning infants respond to markedness and faithfulness constraints. *Language Acquisition*, 10(1): 31–73, 2002.
- Abby Kaplan. *Phonology shaped by phonetics: The case of intervocalic lenition.* PhD thesis, University of California, Santa Cruz, 2010.
- Jonah Katz. Lenition, perception and neutralisation. Phonology, 33(1):43-85, 2016.
- Edward L Keenan and Maria Polinsky. Malagasy (austronesian). *The handbook of morphology*, pages 563–623, 2017.
- Paul Kiparsky. Analogical change as a problem for linguistic theory. *Studies in the Linguistic Sciences Urbana, Ill*, 8(2):77–96, 1978.
- Robert M. Kirchner. An effort-based approach to consonant lenition. PhD thesis, UCLA, 1998.
- Waruno Mahdi. Morphophonologische Besonderheiten und historische phonologie des Malagasy, volume 20. D. Reimer, 1988.

Directions of reanalysis

Modeling 00000000000 References

References III

Robert M Nosofsky. The generalized context model: An exemplar model of classification. *Formal approaches in categorization*, pages 18–39, 2011.
Alan Prince and Paul Smolensky. Optimality theory: Constraint interaction in generative grammar. *Optimality Theory in Phonology*, page 3, 1993.
Bruce Tesar and Paul Smolensky. *Learnability in optimality theory*. Mit Press, 2000.
Colin Wilson. Learning phonology with substantive bias: An experimental and computational study of velar palatalization. *Cognitive science*, 30(5):945–982, 2006.