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Abstract. The K-means algorithm is the most commonly used clustering method for
phonetic vowel description but has some properties that may be sub-optimal for rep-
resenting phonetic data. This study compares K-means with an alternative algorithm,
OPTICS, in two speech styles (lab vs. conversational) in English to test whether OP-
TICS is a viable alternative to K-means for characterizing vowel spaces. We find that
with noisier data, OPTICS identifies clusters that more accurately represent the un-
derlying data. Our results highlight the importance of choosing an algorithm whose
assumptions are in line with the phonetic data being considered.
Keywords. phonetics; vowels; unsupervised clustering; K-means; machine learning;
corpus methods

1. Introduction. Cluster analysis is a machine learning task that places unlabeled data into
groups. This is a common technique for exploratory data analysis because it can reveal patterns
that are imperceptible or unexpected. Clustering can also generate objective labels that can be
useful in subsequent analysis. In descriptive phonetics, clustering algorithms are primarily used
to characterize vowel spaces in a data-driven way. The K-means algorithm (Forgy 1965) is most
commonly used for this purpose (e.g. Renwick & Ladd 2016; Shi 2019; Bissell 2021), in part be-
cause it is intuitive, computationally efficient, and relatively straightforward to implement. Oth-
erwise, existing work has adopted algorithms that belong more broadly to the family of centroid-
based clustering, which K-means is also a part of (e.g. Gaussian Mixture Models; Vallabha et al.
2007).

K-means has been used for for tasks such as confirming previously labeled vowel categories
(e.g. Bissell 2021 on Tol; Renwick & Ladd 2016 on Standard Italian; Nadeu and Renwick 2016
on Catalan), evaluating whether specific phonetic parameters improve vowel classification (e.g.
Shi 2019; Shi et al. 2019), and comparing the separability of vowel categories across different
speech styles (e.g. Czoska et al. 2015). Oftentimes, clustering algorithms are used as one of sev-
eral analysis routes. For example, Renwick & Ladd (2016) use K-means to supplement other
acoustic evidence for a marginal vowel contrast in Standard Italian.

However, K-means makes simplifying assumptions about the underlying data that may not
be met by the particular data under consideration. In these cases, results from K-means clustering
may be a sub-optimal or even misleading characterization of the data. In this paper, we consider
an alternative clustering algorithm, OPTICS (Ordering Points To Identify the Clustering Struc-
ture; Ankerst et al. 1999), which uses areas of high density in the data to identify clusters. Com-
pared to K-means, OPTICS makes fewer assumptions about properties of the underlying data,
and also separates prototypical members of a cluster from noise. These characteristics make OP-
TICS a potentially useful algorithm for descriptive phonetic analysis.

In this paper, we compare the two algorithms using data from i) Hillenbrand et al. (1995)
and ii) the Buckeye Corpus of Conversational Speech (Pitt et al. 2005), respectively represent-
ing lab and conversational speech. We find that while K-means and OPTICS perform similarly in
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lab speech, they diverge significantly when applied to speech collected in more naturalistic con-
texts. In conversational speech, the clusters that OPTICS identifies appear to align better with
human-identified vowel centers, while K-means primarily maximizes the dispersion of the clus-
ter centers. We argue that this result positions OPTICS as a useful algorithm in the clustering of
vowel spaces.

2. Comparison of K-Means and OPTICS: method and assumptions. While many clustering
algorithms are similar on the surface, each algorithm has built-in assumptions that can result in
different characterizations of the same data. Among these many options, we chose to compare
K-means and OPTICS because they represent two major types of clustering—centroid-based and
density-based—that differ significantly in their mathematical approach. Within centroid-based
algorithms, K-means is most commonly used in phonetics, and a logical starting point for com-
parison. OPTICS (a close relative of another well-known method DBSCAN) is a type of density-
based clustering, and has become a common tool for exploratory analysis more generally due to
its relatively few statistical assumptions. While it is certainly also worth considering other clus-
tering algorithms, we will take these two algorithms as a useful starting point for a comparative
analysis.

In the following section, we compare some key differences between K-means and OPTICS
that are particularly relevant to vowel data. A more general discussion can be found in papers
describing the benefits and shortcomings of both K-means and OPTICS (Morissette & Chartier
2013; Kanagala & Krishnaiah 2016; Schubert et al. 2017; Bajal et al. 2022).

2.1. CLUSTER CENTERS. K-means starts with a known number of clusters (where K is the
number of clusters). Clusters are randomly initialized, and the location of each cluster center (i.e.
centroid) is adjusted iteratively to best fit the data.

The original formulation of K-means is known to be sensitive to the randomly initiated start-
ing point of centroids. This issue can be dealt with by either running the algorithm multiple times
on different starting points, or using variants like the K-means++ algorithm (Arthur & Vassilvit-
skii 2006), which initializes centers to be maximally dispersed from each other. The latter so-
lution builds a new assumption to the algorithm- that the ideal cluster centers are also approxi-
mately maximally dispersed. Such an assumption may hold true for some vowel data and is in
line with theories that predict maximal dispersion for vowel categories (Liljencrants & Lindblom
1972). However, the algorithm is consequently expected to struggle in cases where cluster centers
are not evenly distributed.

OPTICS identifies clusters as areas of relatively high density separated by areas of low den-
sity. This means that there is not an a priori set number of clusters. Additionally, while cluster
centers can be calculated from the resulting clusters, they are not a key part of the algorithm. Be-
cause OPTICS relies on variation in density, it is predicted to struggle when the data is of approx-
imately uniformly high or low density, for example with significantly overlapping clusters.

2.2. TREATMENT OF POTENTIAL OUTLIERS. K-means classifies all points as part of a cluster.1

On the other hand OPTICS will label some points as ‘noise’ when they do not fit the criteria to be
in any cluster. In other words, not all points are assigned a cluster label.

Whether it is desirable to classify all points or not depends on the goal of clustering: either to

1 While traditionally the K-means algorithm has been known to be sensitive to outliers, a minor adjustment to the
algorithm can help account for this by classifying outliers without using them to update the centroid.
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classify all points or to identify structure in the data. In the case of exploratory descriptions, we
argue that the latter is the priority. In this light, OPTICS may perform better in terms of identify-
ing core structure in the data and distinguishing between prototypical data points and outliers.

2.3. DATA GEOMETRY. K-means also contains assumptions about the geometry of the under-
lying clusters that it is attempting to identify. Generally, all centroid-based clustering algorithms
assume that clusters radiate out evenly from centroids. K-means further assumes that clusters are
roughly circular and of similar size and variance (Murphy 2022). Where data deviates from these
assumptions, K-means can identify clusters that mischaracterize the data. In contrast, OPTICS
makes no assumptions about cluster geometry. Clusters can be of any shape or size as long as
they follow the density constraints discussed above.

2.4. IMPLICATIONS FOR VOWEL SPACES. Now we consider whether the two algorithms dis-
cussed above are suited to the vowel data considered in this study (Figure 1). The data on the left
are 7 English monophthongs collected in a controlled environment and context, taken from Hil-
lenbrand et al. (1995). Here, vowels fall into similarly-sized clusters that are roughly circular and
of similar densities. With one exception (/æ/ vs. /E/2), clusters are well-separated and relatively
evenly dispersed across the vowel space. In other words, K-means is expected to work well, as
the data aligns with assumptions of the algorithm. OPTICS, which primarily assumes that there
are areas of high densities separated by areas of lower densities, should also perform well on the
lab speech.

Figure 1. Normalized data for lab (left) and conversational (right) speech. Ellipses show 95%
confidence intervals

On the right of this figure is conversational data, specifically a subset of cardinal vowels (/i,
A, u/) from the Buckeye corpus (Pitt et al. 2005). In this case, several of the K-means assump-
tions are not met; the categories are not of the same size, not circular, and significantly overlap.
The category centers are also not maximally dispersed within the data space, where /i/ and /u/ in
particular are relatively close together. Consequently, K-means will not be expected to perform
as well on the data. While variation in shape and size is not an issue for OPTICS, the significant
2 Higher dimensional representations (i.e. including duration) improves the separability of /æ/ and /E/, but in general
higher dimensionality in the data may still result in overlapping categories.
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overlap between the categories (and therefore lower variation in density) may also pose issues for
this algorithm.

In summary, K-means has several pitfalls: it makes assumptions about optimal cluster disper-
sion and geometry, and requires an a priori determination of the number of clusters (though, as
discussed below, several metrics can be used to estimate the ‘optimal’ number of clusters). While
these assumptions are reasonably met in controlled lab speech, they are clearly not met in more
naturalistic speech. OPTICS makes fewer assumptions, but the significant overlap of clusters in
the naturalistic speech data can potentially pose a problem for this algorithm as well. In the next
section, we will investigate how these methods perform in lab vs. naturalistic speech, starting
with the lab speech context.

3. OPTICS vs K-Means in controlled lab speech. The first case that we consider is controlled
lab speech. Lab speech is recorded in a relatively noise-free environment, and often has more
constrained contextual variation. Compared to corpus data, lab speech typically has less data
points and speakers and can exclude potentially interesting sources of variation. This trade-off
between the amount of data and control over the environment is common in linguistics.

Moreover, findings from lab speech, which is artificially restrictive, may not hold in more
naturalistic corpus data. Methodologically, it is therefore productive to treat lab and corpus data
as complimentary. For this study, we use controlled lab speech as a first case for comparing the
viability of the OPTICS and K-means algorithms. This allows for investigation of clustering in
the best case scenario.

3.1. DATA. Lab speech data come from Hillenbrand et al. (1995), which consists of acoustic
measurements (duration and F1-F3 at multiple time points) from 93 speakers. Note that original
recordings were not available, so our calculations were made from the published acoustic mea-
surements. Stimuli were English vowel phonemes with two repetitions per speaker, all collected
in the /hVd/ environment. We used the subset of 7 monophthongs (/i E æ A U u/), for a total of
1302 tokens. This dataset has a relatively low number of tokens per speaker, but since all tokens
are in the same environment there is expected to be relatively little variation.

We restricted the data to monophthongs to compare the two clustering methods using static
measures of F1 and F2. For monophthongs, midpoint F1/F2 data are the most commonly re-
ported acoustic measures and are considered to be reasonably descriptive of the vowel space. As
such, we take the midpoint F1/F2 data as the input for the clustering algorithm. While both K-
means and OPTICS can perform well on higher-dimensional data (e.g. by including other mea-
sures such as duration and formant trajectories), we use this simpler two-dimensional parameter
space for ease of visual interpretation and methodological comparison.

3.2. METHODS. We normalize the data by speaker using Lobanov normalization (Nearey 1965).
A token was also excluded if it was less than 50 ms long, or if any of the normalized measures
were outside of 3 standard deviations from the mean. Under these criteria, approximately 5% of
the data were excluded. The same data cleaning process was used for both clustering algorithms.

The other major methodological step is to optimize each clustering algorithm, by setting pa-
rameters to get the best fit for the data. For K-means, optimization means selecting the number
of clusters K. When the number of clusters is known a priori, this is straightforward, but more
frequently linguists are interested in cases where the ‘correct’ number of clusters is unknown.
In these cases, K is generally selected to minimize the number of clusters while maximizing the
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separation between clusters.
We consider both possibilities for the Hillenbrand data (where a priori K=7) and optimize

K using two metrics, the inertia plot (Thorndike 1953) and silhouette plot (Rousseeuw 1987).
When setting the number of clusters, there is a trade-off between the interpretability of the results
(fewer clusters) and the ability to describe the data (distance between points and centers). The in-
ertia plot and silhouette plot visualize this trade-off in different ways, and can be used to identify
a value K where these competing constraints are optimized (see also Nanjundan et al. 2019 for a
summary of K-means optimization). Note that there is still a level of subjective judgment present
in determining the ‘best’ value for K.

In OPTICS, the number of clusters is not decided beforehand, but is based on some cutoff
value which is set specifically for each data set. Setting this cutoff involves a trade-off between
inclusion of points and number of clusters. A high cutoff results in less points determined as
noise (i.e. more points included), but also may result in large, uninformative clusters. On the
other hand, a smaller cutoff increases the separability between clusters, but results in more points
being excluded as noise. We set a value for the cutoff that minimized the number of points classi-
fied as noise but maintained some cluster structure (i.e. the maximum cutoff that avoided merging
all of the data into a single cluster)

3.3. RESULTS. Now, we turn to comparing results of K-means and OPTICS clustering on the
Hillenbrand dataset, as visualized in Figure 2. Based on the procedure described in Section 3.2,
both algorithms independently identified 6 clusters as optimal.

Figure 2. Clusters found by K-means vs. OPTICS using monophthongs from Hillenbrand et al.
(1995). Clusters are visualized as convex hulls, where ‘x’ indicates mislabeled points.

At a high level, OPTICS and K-means appear to perform very similarly. Note that the under-
lying data had 7 vowel categories; two of them (/æ/ and /E/) have significantly overlapped F1/F2
midpoints in the data, and consequently both K-means and OPTICS are not able to separate the
two categories. In this particular situation, the overlap can be resolved by adding an additional
dimension (duration). However, overlapping clusters is a very common feature of vowel data and
is not always resolved by higher dimensionality, as is the case for the conversational speech in the
next section.

In terms of differences between the algorithms, K-means has slightly larger clusters because
it does not exclude points as noise and the clusters accommodate potential outliers. In contrast,
OPTICS identifies these values as noise and they are not assigned a cluster. This results in more
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separation between the clusters, and smaller, rounder shapes (despite no constraint on cluster
shape existing in the algorithm). These results demonstrate that in an idealized vowel space de-
rived from controlled lab data, both K-means and OPTICS can capture the general patterns in
how vowels are structured in phonetic space.

4. OPTICS vs K-means in conversational speech. In this section, we investigate how K-means
and OPTICS perform on conversational speech. Corpus data provides insight into speech in more
naturalistic settings and often allows for more data for an individual speaker than can be reason-
ably collected in a lab setting. On the other hand, these data also often have less even distribution
across vowel categories and contexts, more overlap, and more variation, which can be expected to
affect the results of some clustering algorithms (as discussed in Section 2).

4.1. DATA AND METHODS. Data for this analysis are from the Buckeye Speech Corpus (Pitt
et al. 2005), which consists of face-to-face naturalistic interviews. For the purpose of this study
seven speakers were randomly selected for analysis. In addition, data were subset to the three
vowels /A, i, u/ and constrained for environment by removing vowels that were adjacent to semivow-
els, nasals, and liquids, resulting in 1953 tokens as summarized in Table 1. We use this rela-
tively restricted set of vowels to minimize overlap between categories and allow for a more inter-
pretable comparison of the algorithms under consideration. Data processing and outlier selection
were conducted as described above in Section 3.2.

Vowel Tokens
/A/ 776
/i/ 740
/u/ 437

Table 1. Tokens distribution in Buckeye subset

4.2. RESULTS.

4.2.1. OPTIMIZATION. As discussed in Section 2, for K-means we consider both a pre-specified
K value and one identified using parameter optimization. K-means optimization selected 6 clus-
ters, compared to the ‘ground truth’ of K=3 clusters.3 Figure 3 compares the clusters identified
by K-means in both cases (K=3 vs. K=6). In both configurations, K-means splits the space into
relatively even groups that are maximally dispersed, seemingly regardless of the underlying struc-
ture of the data. This suggests that the optimization procedure for K-means is not as effective in
cases where the data do not meet the algorithmic assumptions (Schubert 2022). In the rest of this
section, for the sake of comparability, we use the K-means K=3 results.

For OPTICS, optimization resulted in the algorithm identifying 3 clusters. Note that a large
proportion of points are excluded as noise (36%), which is suboptimal because this may mask
meaningful variation. Nevertheless, as discussed in the next section, the OPTICS results appear
to better capture broader generalizations about the distribution of phonemic vowel categories.

3 Note that even though there are 3 vowel clusters, there could easily be more than three clusters of interest, if for
example one is interested in subphonemic variation.
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Figure 3. Clusters identified by K-means for conversational speech with three clusters (left) and
six clusters (right)

4.2.2. COMPARISON OF K-MEANS AND OPTICS. Figure 4 compares the results of K-means
and OPTICS against the original hand-labeled data. First, when examining the original data, we
can identify the following general patterns:

1. /i/ is front and has distinct boundaries.

2. /u/ is relatively fronted and has significant overlap with the adjacent categories.

3. /A/ is oblong.

Figure 4. Comparison of K-means (K=3) and OPTICS on Buckeye corpus cardinal vowels

The K-means results fail to capture these generalizations in the data. Instead, the data are
partitioned into three clusters of roughly equal size. Notably, clusters also divide areas that may
be expected to group together based on the underlying data. In contrast, OPTICS appears to ex-
tract the generalizations identified above: /i/ is the largest cluster, not because of the size of the
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underlying vowel category, but because it has well-defined boundaries, resulting in less points be-
ing excluded as noise. The /u/ cluster is relatively front and placed in an area where there is mini-
mal overlap with the other vowels in the original data. Finally, the /A/ cluster is relatively oblong.
From these results, it appears that OPTICS is more likely to extract qualitatively meaningful pat-
terns from the data in conversational speech.

To deal with overlapping clusters, K-means appears to enforce sometimes artificial bound-
aries that cut across these overlapping areas. In contrast, OPTICS identifies areas of high density,
and excludes many of these overlapping areas as noise. These results suggest that while OPTICS
does not classify every point, it is identifying likely vowel centers. While this may abstract away
from interesting and informative variation, it also allows for several key generalizations to be cap-
tured in the data, which we argue is the more common usage of clustering.

5. Conclusion. In this paper, we compare two clustering methods (OPTICS and K-means) on
lab and conversational speech. We find that in lab speech, both algorithms perform similarly and
are able to capture the major patterns in the data. In contrast, in conversational speech, K-means
appears to struggle to capture key generalizations, while OPTICS captures those patterns at the
cost of excluding many points from the clusters. This difference underlines the need to assess
each set of data before choosing a clustering method and highlights the potential of OPTICS for
supplementing traditional methods for describing vowels.

A particular challenge for both methods is posed by overlapping clusters in the underlying
categories. In conversational speech, even with constraints set on the number of categories and
environments, there was significant overlap between the clusters. Such overlap can be expected to
increase in even more naturalistic and varying data. One way to help reduce overlap would be to
move to a higher-dimensional representation of the vowel space, which is a potential productive
direction for future research, although we note that this is unlikely to entirely resolve acoustic
overlap between vowel categories.

This paper outlines an initial comparison between two clustering approaches, but there are
several beneficial paths to further develop our understanding of the use of clustering in descrip-
tive phonetics. Although we looked exclusively at F1/F2 midpoints in English monophthongs,
subsequent work should also increase the type and variety of data being examined, such as by
considering dynamic segments, higher-dimensionality data, and non-English vowel systems. In
addition, we focused on categorization of phonemic vowel categories in the current analysis, but
there is also interesting variation at the subphonemic level that may also be of interest to those
using cluster analysis. Finally, we describe only a small subset of the available clustering algo-
rithms, and there are likely others that may also be appropriate for the use case that we are defin-
ing here, such as hierarchical clustering methods, which would be useful to explore in further
detail.

Both K-means and OPTICS are able to approximate superficial structure in the vowel space,
but differ in their underlying mathematical approach. Unlike K-means, density-based methods
like OPTICS can identify areas of high density even in noisy data and extract likely vowel centers
from that structure, which we propose results in more insight into the structure and patterns of
the vowel system. This study emphasizes the importance of choosing an appropriate clustering
algorithm and highlights the potential of density-based algorithms like OPTICS for analysis of
vowel spaces.
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