Types of statistical learning in the acquisition of alternations: insights from artificial grammar learning Jennifer Kuo, Cornell University (kuojennifer.com) Background Experiment

• How do speakers learn alternations?

 \rightarrow [rat-a] (non-alternation)

[rat]

 \neq [rad-a] (t \sim d alternation)

- Factors involved in alternation learning:
 - Frequency-matching: match the rate of alternation found in lexicon (e.g. Ernestus and Baayen, 2003; Hayes et al., 2009).
 - Phonotactics: probabilistic knowledge of how phonemes can combine in stems (e.g. Pater and Tessier, 2005; Chong, 2021)
- Phonotactics and alternations...
 - Often line up
 - e.g. $/fifz \rightarrow [fifz]$ (cf. *[fiz])
- But can also **mismatch** (Paster, 2009; Gouskova, 2018)
- Methodological challenges
- Hard to isolate effects of frequency and phonotactics

Research Questions

- When do speakers use phonotactics to aid in alternation learning?
- How does phonotactics interact with **frequency-matching**?

Acknowledgements

Thanks to members of the Cornell Phonetics Lab, Bruce Hayes, and Kie Zuraw for their valuable input!

Selected references.

Chong, A. J. (2021). The effect of phonotactics on alternation learning. *Language*, 97(2):213–244.

Ernestus, M. T. C. and Baayen, R. H. (2003). Predicting the unpredictable: Interpreting neutralized segments in Dutch. Lan*guage*, 79(1):5–38.

Martin, A. (2011). Grammars leak: Modeling how phonotactic generalizations interact within the grammar. Language, 87(4):751-770.

Paster, M. (2009). Explaining phonological conditions on affixation: Evidence from suppletive allomorphy and affix ordering. *Word structure*, 2(1):18–37.

Pater, J. and Tessier, A.-M. (2005). Phonotactics and alternations: Testing the connection with artificial language learning. *UMOP*, 31:1–16.

Steriade, D. (2000). Paradigm uniformity and the phoneticsphonology boundary. In Broe, M. and Pierrehumbert, J. (eds.), *Papers in laboratory phonology*, vol. 5, pp. 313–334. CUP.

SG chihas p ganas p	/-wa/ chihas. p wa ganas. k wa	Pattern non-alt p∼k	Phonotactics marked onse unmarked ons
SG	/-la/		
ganar p	ganar. p la	non-alt	unmarked ons
pener p	pener. k la	p \sim k	unmarked ons

• Figure B. Effect of phonotactics only at higher alternation rates.

Cornell University

Discussion

Preference for **non-alternation** Paradigm uniformity (Benua, 1995; Kenstowicz, 1997; Steriade, 2000) Underlearning of alternation pattern

Effect of phonotactics **depends on alterna**tion rates, surfacing when... • Uncertainty in choice of alternant. • Extending high rates of alternation.

Leakage (Martin, 2011): use phonotactics... • even when alternation is *not* phonotactically motivated in training. • potentially shaping lexicon over time.

Implications for **modeling** Phonotactics & alternations are separate... but interact with e/o

Takeaway

Speakers utilize phonotactics when extending alternations, in a way that is sensitive to paradigm-internal frequencies.

Future directions

• Test the reverse pattern (alternation increases phonotactic violations). **Degrees** of phonotactic violations. • Effect of **individual** phonotactic judgments Effect of input size • Replication with **in-person study**.

Link to poster

www.kuojennifer.com/files/2024_wccfl.pdf

References

- Benua, L. (1995). Identity effects in morphological truncation. In Jill N. Beckman, S. U. and Urbanczyk, S., editors, *University of Massachusetts occasional*
- Chong, A. J. (2021). The effect of phonotactics on alternation learning. Lan*guage*, 97(2):213–244.
- Ernestus, M. T. C. and Baayen, R. H. (2003). Predicting the unpredictable: Interpreting neutralized segments in Dutch. *Language*, 79(1):5–38.
- Gouskova, M. (2018). Morphology and Phonotactics. In Oxford Research Encyclopedia of Linguistics. Oxford University Press.
- Hammond, M. (1999). The phonology of English: a prosodic optimality-theoretic approach: a prosodic optimality-theoretic approach. Oxford University Press, UK.
- Hayes, B., Siptár, P., Zuraw, K., and Londe, Z. (2009). Natural and unnatural constraints in Hungarian vowel harmony. *Language*, pages 822–863.
- Kenstowicz, M. (1997). Uniform exponence: Extension and exemplification. In Selected Papers from the Hopkins Optimality Workshop 1997, University of Maryland Working Papers in Linguistics, volume 5, pages 139–154.
- Martin, A. (2011). Grammars leak: Modeling how phonotactic generalizations interact within the grammar. *Language*, 87(4):751–770.
- Paster, M. (2009). Explaining phonological conditions on affixation: Evidence from suppletive allomorphy and affix ordering. *Word structure*, 2(1):18–37.
- Pater, J. and Tessier, A.-M. (2005). Phonotactics and alternations: Testing the connection with artificial language learning. University of Massachusetts Occasional Papers in Linguisitcs, 31:1–16.
- Steriade, D. (2000). Paradigm uniformity and the phonetics-phonology boundary. In Broe, M. and Pierrehumbert, J., editors, *Papers in laboratory phonology*, volume 5, pages 313–334. Cambridge University Press Cambridge.

papers 18: Papers in Optimality Theory, pages 77–136. Amherst: GLSA.