# Hiatus avoidance and the development of Maori passive allomorphy Jennifer Kuo, Cornell University (kuojennifer.com)

## **1** Overview

• How do learners deal with surface ambiguity? /bʌtəɹ/ ['lularian']

/repvq/

- Possible factors:
  - frequency-matching (Ernestus and Baayen, 2003; Albright, 2002)
  - Other biases (Moreton, 2008)
- Paradigm reanalysis as window into phonological learning (Kiparsky, 1965)
- **Case study**: Maori passive allomorphy
- **Results**: effects of **markedness bias** 
  - Avoidance of diphthongs and hiatus

## 2 Background: Maori

- Passive allomorphs: -a, -ia, -ina, -na, -Cia
- **C**=variable consonant

| stem   | suffixed                                                                       |
|--------|--------------------------------------------------------------------------------|
| fao    | fao-a (V-initial)                                                              |
| paː    | paː-ia (V-initial, after [a])                                                  |
| uta    | uta-i <b>n</b> a                                                               |
| aŋi    | aŋi- <b>n</b> a                                                                |
| inu    | inu- <mark>m</mark> ia                                                         |
| ai     | ai- <b>t</b> ia ('Default' option)                                             |
| mataku | mataku- <b>r</b> ia                                                            |
| rere   | rere- <mark>k</mark> ia                                                        |
| kuː    | kuː-ŋia                                                                        |
| motu   | motu- <mark>h</mark> ia                                                        |
|        | stem<br>fao<br>paː<br>uta<br>aŋi<br>inu<br>ai<br>mataku<br>rere<br>kuː<br>motu |

• Origin: final C deletion & regular vowel alternations (Pawley, 2001; Evans, 2001).

| V-final                                                   | a-fin   | al     |         |
|-----------------------------------------------------------|---------|--------|---------|
| *paRo/paRo-ia                                             | *paRa/p | aRa-ia |         |
| _                                                         | _       |        | (C-del) |
| fao/fao-a                                                 | _       |        | (i>∅/a) |
| fao/fao-a                                                 | paː/pa  | ix-ia  |         |
| $\triangle$ Allomorphy of /a, ia/ in historically V-final |         |        |         |
| stems.                                                    |         |        |         |
| C-final                                                   |         |        |         |
| *biki <b>t</b> /biki <b>t</b> -ia                         |         |        |         |
| piki/piki <b>t</b> ia                                     | (C-del) |        |         |
| _                                                         | (i>∅/a) |        |         |
| piki/piki- <b>t</b> ia                                    |         |        |         |
|                                                           |         |        |         |

 $\triangle$ /Cia/ in historically C-final stems.

# **3 Reanalysis in passive allomorphs**

**Method**: Compare historical and modern Maori

- Historical: Proto-Oceanic (POc) protoforms from Austronesian Comparative Dictionary (ACD; Blust et al., 2023)
- Modern: Williams 7th ed. dictionary (Williams, 1971)
- Example reanalysis: POc \*bulut  $\rightarrow$  Maori puru-a (cf. \*pulu-tia)

### **Predicted vs. observed reanalyses**:

- Frequency-matching models predict reanalysis towards /a/ and /ia/.
- However, /ia/ is much less frequent than expected, suggesting **/ia/** $\rightarrow$ **/tia, Cia/**

**Fig:** Passive allomorphs in POc vs. Maori, by stem-final V (POc preference for /a, ia/ vs. Maori preference for /a, tia/)



## Reanalysis is mostly from ia $\rightarrow$ tia, <u>NOT</u> predicted by distributions

# 6 Modeling renalysis with a markedness bias

#### **Result: Reanalysis in Maori explained by successive generations of** learning, modulated by \*Hiatus and \*LongNuc

#### Model components:

- MaxEnt Harmonic Grammar (Goldwater and Johnson, 2003) to capture gradient alternations.
- **Bias** implemented as a Gaussian prior (Wilson, 2006; White, 2013).
- **Iterative:** Predictions of one iteration is input to next iteration.

### Model constraints:

- Morpheme constraints exponence (Kager, 1996): demand a particular exponent for a particular morphological category, e.g. 'Pass=/tia/'
- Markedness: \*LongNuc and \*Hiatus

### Model evaluation:

 Compare models with markedness bias against controls with no bias.



Table: Mismatches between POc and Maori, by historical stem-final V.

| Suffix |  |
|--------|--|
| Cia    |  |
| tia    |  |
| a      |  |
| ia     |  |
|        |  |
|        |  |
|        |  |

|         |       | _  | -    |
|---------|-------|----|------|
| FINAL V | MATCH | Ν  | Ρ    |
| not [a] | yes   | 53 | 0.71 |
|         | no    | 22 | 0.29 |
| [a]     | yes   | 11 | 0.37 |
|         | no    | 19 | 0.63 |
|         |       |    |      |

**Bias terms:** ( $\mu \approx$  preferred weight) **Flat prior (control)**: uniform μ **Markedness:**  $\mu$ (\*LongNuc,\*Hiatus)> $\mu$ (Faith)

dicts decrease in words that take /-ia/. (Predicted chanage in allomorphs taken by [a] and [i]-final stems (30 iterations)



# 4 Markedness + frequency

Markedness bias against heavy nuclei and vowel hiatus explains reanalysis away from /-ia/.

- UR
- /aka-/aka-
- /aka-
- /aka-

Frequency: Why change towards /tia/? –Most **frequent** C-initial allomorph





Takeaway Markedness effects are found in reanalysis, and may be constrained by stem phonotactics

## Acknowledgements

Thanks to Bruce Hayes, Kie Zuraw, Claire Moore-Cantwell, and members of the UCLA Phonology Seminar for their input.

**References:** www.kuojennifer.com/files/2024\_nels\_maori.pdf



Cornell University

• Constraints: \*LongNucleus,\*HIATUS • Typological & articulatory basis (e.g. Blevins, 1995; Flemming, 2004)

|       | SR  |
|-------|-----|
| -ia/  | [ak |
| -ina/ | [ak |
| -tia/ | [ak |
| -nia/ | ſak |

(ai.a] (ai.na) ka.t**i.a**] ka.ŋ**i.a**] (\*HIATUS & \*VV) (\*VV) (\*HIATUS) (\*HIATUS)

#### **5** Sources of markedness

Q: Which markedness effects can influence reanalysis?

**Proposal:** present in stem phonotactics

Figs: Hiatus and VV nuclei are infrequent (Counts of syllable types in Maori stems)







no hiatus

Diphthong Long V Monophthona

• Data: 7430 headwords (Williams 6th ed. dictionary)

 Analogous results found using protoform corpus (Greenhill and Clark, 2011)

# References

- Albright, A. C. (2002). The identification of bases in morphological paradigms. PhD thesis, University of California, Los Angeles.
- Blevins, J. (1995). The syllable in phonological theory. In Goldsmith, J. A., editor, *The handbook of phonological theory*, pages 245–306. Blackwell.
- Blust, R., Trussel, S., and Smith, A. D. (2023). CLDF dataset derived from Blust's "Austronesian Comparative Dictionary" (v1.2) [data set]. Zenodo.
- Ernestus, M. and Baayen, R. H. (2003). Predicting the unpredictable: Interpreting neutralized segments in dutch. *Language*, 79(1):5–38.
- Evans, B. (2001). A study of valency-changing devices in Proto-Oceanic. PhD thesis, Research School of Pacific and Asian Studies, Australian National University.
- Flemming, E. (2004). Contrast and perceptual distinctiveness. In Hayes, B., Steriade, D., and Kirchner, R., editors, *Phonetically based phonology*, pages 232–276. Cambridge University Press.
- Goldwater, S. and Johnson, M. (2003). Learning OT constraint rankings using a maximum entropy model. In *Proceedings of the Stockholm workshop on* variation within Optimality Theory, volume 111120.
- Greenhill, S. J. and Clark, R. (2011). Pollex-online: The polynesian lexicon project online. *Oceanic Linguistics*, pages 551–559.
- Kager, R. (1996). On affix allomorphy and syllable counting. In Ursula, K., editor, *Interfaces in phonology*, pages 155–171. Akademie Verlag.
- Kiparsky, P. (1965). *Phonological change*. PhD thesis, MIT.
- Moreton, E. (2008). Analytic bias and phonological typology. *Phonology*, 25(1):83–127.
- Pawley, A. (2001). Proto polynesian \*-cia. In *Issues in Austronesian Morphol*ogy. Pacific Linguistics.
- White, J. (2013). Bias in phonological learning: Evidence from saltation. PhD thesis, University of California, Los Angeles.
- Williams, H. W. (1971). A dictionary of the Maori language, 7th edition. Wellington, N.Z.: Government Printer.
- Wilson, C. (2006). Learning phonology with substantive bias: An experimental and computational study of velar palatalization. *Cognitive science*, 30(5):945-982.